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The dynamic response of an axially accelerating, elastic, tensioned beam is
investigated. The time-dependent velocity is assumed to vary harmonically about
a constant mean velocity. These systems experience a coriolis acceleration
component which renders such systems gyroscopic. The equation of motion is
solved by using perturbation analysis. Principal parametric resonances and
combination resonances are investigated in detail. Stability boundaries are
determined analytically. It is found that instabilities occur when the frequency of
velocity #uctuations is close to two times the natural frequency of the constant
velocity system or when the frequency is close to the sum of any two natural
frequencies. When the velocity variation frequency is close to zero or to the
di!erence of two natural frequencies, however, no instabilities are detected up to
the "rst order of perturbation. Numerical results are presented for di!erent #exural
sti!ness values and for the "rst two modes.
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1. INTRODUCTION

Due to their technological importance, the vibrations of axially moving materials
have been investigated by many researchers. Threadlines, high-speed magnetic and
paper tapes, strings, power transmission chains and belts, band-saws, "bres, beams,
aerial cable tramways and pipes conveying #uid are some of the examples. Ulsoy
et al. [1] and Wickert and Mote [2] reviewed the literature on axially moving
materials. Wickert and Mote [3] investigated the transverse vibrations of travelling
strings and beams. They used travelling string eigenfunctions and introduced
a convenient orthogonal basis suitable for discretization. The same authors [4] also
presented a modal analysis using complex state eigenfunctions and their
conjugates. Ulsoy [5] treated a model for the transverse vibration of an axially
moving beam which includes elastic coupling between two adjacent spans. The
system was then analyzed by using a classical approximate solution method. It was
concluded that the presence of a beating phenomenon at low transport velocities
was destroyed by higher velocities and/or tension di!erences in the two spans.
Al-Jawi et al. [6}8] "rst investigated the vibration localization phenomenon in
dual-span axially moving beams. Wu and Mote [9] studied simple torsion
parametric resonances and combination torsion-bending parametric resonances in
0022-460X/99/420239#19 $30.00/0 ( 1999 Academic Press
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an axially moving band by an in-plane periodic edge loading that was normal to the
longitudinal axis of the band. A theoretical basis for the analysis of band vibration
and stability was studied by Ulsoy and Mote [10]. The band natural frequencies
were found to decrease with increasing axial velocity at a rate dependent on the
wheel support system constant, and to increase with increasing axial tension or
&&strain''.

Pakdemirli and Ulsoy [11] investigated principal parametric resonances and
combination resonances for any two modes for an axially accelerating string. They
found that for velocity #uctuation frequencies near twice any natural frequency, an
instability region occurs whereas for the frequencies close to zero, no instabilities
were detected. For combination resonances, instabilities occurred only for those of
additive type. No instabilities were detected for di!erence-type combination
resonances in agreement with reference [12]. Oz et al. [13] investigated the
transition behaviour from strip to beam for axially moving continua. An
approximate analytical expression for the natural frequency was given for the
problem. For variable velocity pro"les, stability borders were determined
analytically. The beam e!ects were studied. Wickert [14] analyzed free non-linear
vibrations of a moving beam over the sub- and superharmonic transport speed
ranges. Pellicano and Zirilli [15] presented a boundary layer solution for the
axially moving beam problem with small #exural sti!nesses. Asokanthan and
Ariaratnam [16] investigated #exural instabilities in moving bands under
harmonic tension. They discussed the e!ects due to damping, mean band speed,
and the band compliance on the band stability.

In most of the references given, the transport velocity was taken as constant. In
reality, the systems are exposed to accelerating and decelerating motions. Miranker
[17] took a model for the transverse vibrations of a tape moving between a pair of
pulleys and by using a variational procedure derived the equations of motion for
time-dependent axial velocity. Mote [18] investigated the problem of an axially
accelerating string with harmonic excitation at one end and determined stability by
Laplace transform techniques. Pakdemirli et al. [19] re-derived the equations of
motion for an axially accelerating string using Hamilton's principle and
numerically investigated the stability of the response using Floquet theory.
A sinusoidal variation of the transport velocity, about a mean velocity of zero,
was considered in the analysis. Pakdemirli and Batan [20] considered a di!erent
type of velocity variation, namely the periodic, constant acceleration}deceleration
type.

In this study, an Euler}Bernoulli beam having di!erent #exural sti!ness values
and moving with harmonically varying velocities is considered. The beam is simply
supported at both ends. The equation of motion is derived by following a method
similar to that given in reference [14]. A harmonically varying velocity function is
chosen. The equation of motion is solved by directly applying the method of
multiple scales to the partial di!erential system (direct-perturbation method). For
higher order expansions, solutions obtained by using this direct-perturbation
method better represent the real behaviour of the system than the common method
of discretization (discretization}perturbation method) [21}28]. In the present case,
which contains only two terms in the expansion, the advantage of using the
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direct-perturbation method is that the equations need not be cast into a form
convenient for orthogonalizing the modes [11]. The natural frequency variation
with velocity for various #exural sti!ness values are determined for the "rst two
modes. Principal parametric resonances, sum and di!erence-type combination
resonances are investigated. For velocity #uctuation frequencies near twice any
natural frequency, an instability region occurs whereas for frequencies close to zero,
no instabilities are detected. For combination resonances, instabilities occurred
only for those of additive type. No instabilities are detected for di!erence-type
combination resonances up to the "rst approximation order.

2. APPROXIMATE ANALYSIS

For the axially moving beam illustrated in Figure 1, by following a derivation
similar to that given in reference [14], it can be shown that the linear,
time-dependent, dimensionless equation of motion is

wK#2wR @v#w@v5 #l2
f
wil#(v2!1)wA"0, (1)

where w is the transverse displacement, v is the axial velocity and l
f

is the
dimensionless #exural sti!ness. The material particle of the travelling beam
experiences local wK , Coriolis 2wR @v, and centripetal v2wA acceleration components.
The boundary conditions are

w(0, t)"w(1, t)"0, wA(0, t)"wA(1, t)"0. (2)

When l2
f
"0, equation (1) reduces to that of a travelling string. The dot denotes

di!erentiation with respect to time and the prime denotes di!erentiation with
respect to the spatial variable x.

Assuming that the velocity is harmonically varying about a constant mean
velocity v

0
, one writes

v"v
0
#ev

1
sinXt, (3)

where e is a small parameter and ev
1
, which is also small, represents the amplitude

of #uctuations, X is the #uctuation frequency. Unlike in reference [13], l2
f
is now an

order one term. Substituting equation (3) into equation (1) and keeping terms up to
the "rst order of approximation, one has

wK#2v
0
wR @#(v2

0
!1)wA#l2

f
wil#e(v

1
X cosXtw@#2v

1
sinXtwR @#2v

0
v
1
sinXt wA)"0.

(4)
Figure 1. Axially moving beam with time-dependent velocity.
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The direct perturbation method will be applied to equation (4) in search of
solutions. This method does not require conversion of the equation into other
forms as done in the discretization}perturbation method [11]. Using the method of
multiple scales [29, 30] and assuming a "rst order expansion, one writes

w(x, t; e)"w0(x,¹0 , ¹1)#ew1 (x,¹0, ¹1)#2 , (5)

where w0 and w1 are the displacement functions at orders 1 and e, ¹0"t and
¹1"et are the usual fast and slow time scales. In terms of the new variables, the
time derivatives can be written as

d/dt"D0#eD1#2 , d2/dt2"D20#2eD0D1#2 , (6)

where D
n
"L/L¹

n
. Substituting equations (5) and (6) into equation (4), separating

terms at each order of e, one obtains

O(1): D20w0#2v0D0w@0#(v20!1)wA0#l2
f
wil0"0, (7)

O(e): D20w1#2v0D0w@1#(v20!1)wA1#l2
f
wil1"!2D0D1w0!2v0D1w@0

!2v1 sinX¹0D0 w@0!2v0v1 sinX¹0wA0!Xv1 cosX¹0w@0 (8)

The solution at order 1 can be written as follows:

w0(x,¹0,¹1 ; e)"A
n
(¹1) eiun

¹
0>

n
(x)#AM

n
(¹1) e~*un

¹
0>1

n
(x), (9)

The spatial functions >
n
(x) satisfy the equation

l2
f
>il

n
#(v20!1)>A

n
#2iv0un

>@
n
!u2

n
>
n
"0, (10)

with the boundary conditions

>
n
(0)"0 >

n
(1)"0; >A

n
(0)"0, >A

n
(1)"0. (11)

The solution is

>
n
(x)"c1n(eib1n

x
#C2neib2n

x
#C3neib3n

x
#C4neib4n

x). (12)

The b
in

satisfy the dispersive relation

l2
f
b4
in
#(1!v20)b2

in
!2u

n
v0bin

!u2
n
"0, i"1, 2, 3, 42 , n"1, 22 . (13)

Applying the boundary conditions to the solution, one obtains the matrix equation

1 1 1 1
b2
1n

b2
2n

b2
3n

b2
4n

eib1n eib2n eib3n eib4n

b2
1n

eib1n b2
2n

eib2n b2
3n

eib3n b2
4n

eib4n

i
g
j
g
k

1

C
2n

C
3n

C

e
g
f
g
h

c
1n
"

i
g
j
g
k

0

0

0

0

e
g
f
g
h

. (14)
4n
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For non-trivial solutions, the determinant of the coe$cient matrix must be zero,
which yields the support condition

[ei (b1n
#b

2n
)
#ei (b3n

#b
4n

)] (b2
1n
!b2

2n
) (b2

3n
!b2

4n
)

#[ei (b1n
#b

3n
)
#ei (b2n

#b
4n

)] (b2
2n
!b2

4n
) (b2

3n
!b2

1n
)

#[ei (b2n
#b

3n
)
#ei (b1n

#b
4n

)] (b2
1n
!b2

4n
) (b2

2n
!b2

3n
)"0. (15)

Numerical values of u
n
as well as b

in
can be calculated by using equations (13) and

(15). These results are presented in section 5. Using the set of equations in equation
(14), one can "nd the coe$cients C

2n
, C

3n
and C

4n
by elimination:

C
2n
"!

(b2
4n
!b2

1n
) (eib3n!eib1n)

(b2
4n
!b2

2n
) (eib3n!eib2n)

, C
3n
"!

(b2
4n
!b2

1n
) (eib2n!eib1n)

(b2
4n
!b2

3n
) (eib2n!eib3n)

, (16, 17)

C
4n
"!1!C

2n
!C

3n
. (18)

Hence, >
n
(x) now reads

>
n
(x)"c

1nGeib1n
x
!

(b2
4n
!b2

1n
) (eib3n!eib1n)

(b2
4n
!b2

2n
) (eib3n!eib2n)

eib2n
x
!

(b2
4n
!b2

1n
) (eib2n!eib1n)

(b2
4n
!b2

3n
)(eib2n!eib3n)

eib3n
x

#A!1#
(b2

4n
!b2

1n
) (eib3n!eib1n)

(b2
4n
!b2

2n
) (eib3n!eib2n)

#

(b2
4n
!b2

1n
) (eib2n!eib1n)

(b2
4n
!b2

3n
)(eib2n!eib3n)B eib4n

xH . (19)

At the second order of approximation, one substitutes equation (9) into equation
(8). The result is

D2
0
w

1
#2v

0
D

0
w@
1
#(v2

0
!1)wA

1
#l2

f
wil

1
"

!2D
1
A

n
(iu

n
>
n
#v

0
>@
n
)eiun

¹
0#2D

1
AM

n
(iu

n
>M
n
!v

0
>M @
n
) e~iu

n
¹

0

!u
n
v
1
[A

n
> @
n
(ei(un

#X )¹
0!ei(un

!X)¹
0 )!AM

n
>M @
n
(ei(X!u

n
)¹

0!e~i(X#u
n
)¹

0)]

#iv
0
v
1
[A

n
>A
n

(ei(un
#X )¹

0!ei(un
!X)¹

0 )#AM
n
>M A
n

(ei(X!u
n
)¹

0!e~i(X#u
n
)¹

0)]

!

X
2

v
1
[A

n
> @
n
(ei(un

#X)¹
0#ei(un

!X)¹
0)#AM

n
>M @
n
(ei(X!u

n
)¹

0#e~i(X#u
n
)¹

0)]. (20)

Di!erent cases arise depending on the numerical value of velocity variation
frequency. These cases will be treated in the following sections.
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3. PRINCIPLE PARAMETRIC RESONANCES

In this section, one assumes that one dominant mode of vibration exists.
Depending on the numerical value of frequency, three cases will be investigated
separately.

3.1. X AWAY FROM 2u
n

AND 0

In this case, equation (20) becomes

D2
0
w

1
#2v

0
D

0
w@
1
#(v2

0
!1)wA

1
#l2

f
wil

1

"!2D
1
A

n
(iu

n
>
n
#v

0
> @
n
)eiu

n
¹

0#cc#NS¹, (21)

where cc and NS¹ denote complex conjugates and non-secular terms respectively.
One can take the solution of equation (21) as

w
1
(x, ¹

0
,¹

1
)"/

n
(x,¹

1
)eiu

n
¹

0#= (x,¹
0
,¹

1
)#cc, (22)

The "rst term is related to secular terms and the second term is related to
non-secular terms. If equation (22) is substituted into equation (21), the /

n
are found

to satisfy the equation

l2
f
/il
n
#(v2

0
!1)/A

n
#2iv

0
u

n
/@

n
!u2

n
/

n
"!2D

1
A

n
(iu

n
>
n
#v

0
> @
n
) (23)

and the boundary conditions are

/
n
(0)"0, /A

n
(0)"0, /

n
(1)"0, /A

n
(1)"0. (24)

The solvability condition requires (see reference [29] for details of calculating
solvability conditions)

D
1
A

n
"0. (25)

This means a constant amplitude solution up to the "rst order of approximation:

A
n
"A

0
. (26)

Hence, solutions are bounded for this case up to O(e).

3.2. X CLOSE TO 0

For this case, the nearness of X to zero is expressed as

X"ep. (27)
A similar calculation yields the solvability condition as

D
1
A

n
#(k

1
cosp¹

1
#k

2
sin p¹

1
)A

n
"0, (28)
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where

k
1
"

Xv
1P

1

0

>@
n
>M
n
dx

2AiunP
1

0

>
n
>M
n
dx#v

0P
1

0

>@
n
>M
n
dxB

, k
2
"

v
1AiunP

1

0

>@
n
>M
n
dx#v

0P
1

0

>A
n
>M
n
dxB

AiunP
1

0

>
n
>M
n
dx#v

0P
1

0

>@
n
>M
n
dxB

.

(29)

After solving equation (28), one obtains

A
n
"A

0
e~(k

1
sinp¹

1
/p)#k

2
cosp¹

1
/p). (30)

Since Dsin p¹
1
D)1 and Dcosp¹

1
D)1, the complex amplitudes are bounded in time.

Therefore, there are no instabilities up to this order of approximation.

3.3. X CLOSE TO 2u
n

In this case, to represent the nearness of velocity variation frequency to two times
one of the natural frequencies, one writes

X"2u
n
#ep, (31)

where p is a detuning parameter. The solvability condition requires

D
1
A

n
#k

0
AM

n
eip¹

1"0, (32)

where k
0

is

k
0
"

G12 (X!2u
n
)P

1

0

>M @
n
>M
n
dx!iv

0P
1

0

>M A
n
>M
n
dxH

2Giun P
1

0

>M
n
>
n
dx#v

0 P
1

0

>M
n
>@
n
dxH

v
1
,

(33)

To perform a stability analysis, one introduces the transformation

A
n
"B

n
eip¹

1
/2. (34)

B
n

can be written in real and imaginary parts in the form

B
n
"(bR

n
#ibI

n
)ej¹

1. (35)

Substituting equation (34) into equation (32) and equation (35) into the resulting
equation, and separating real and imaginary parts, one obtains the matrix equation

(j#k
0R

) Ak0I!
p
2B

Ak0I#
p
2B (j!k

0R
)
G
bR
n

bI
n
H"G

0
0H, (36)
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where k
0R

and k
0I

are the real and imaginary parts of k
0

de"ned in equation (33).
For a non-trivial solution (bR

n
O0, bI

n
O0), the determinant of the coe$cient matrix

must be zero:

j2"!(p2/4)#k2
0R

#k2
0I

. (37)

Two roots are obtained from equation (37):

j
1,2

"GJ!(p2/4)#k2
0R

#k2
0I

. (38)

For

!Jk2
0R

#k2
0I
(p/2(Jk2

0R
#k2

0I
(39)

the response is unstable whereas it is stable outside this region. Hence the stability
boundaries are determined by

p
1,2

"G2Jk2
0R

#k2
0I

. (40)

Inserting p further into equation (31) gives the "nal result for the frequencies:

X"2u
n
G2eJk2

0R
#k2

0I
. (41)

The two values of X denote the stability boundaries for small e. For a beam with
constant velocity, v

1
"0 and hence k

0
"0 from equation (33) and no instabilities

arise for this case. When the amplitude of #uctuations l
1

increases, the stability
regions widen.

4. COMBINATION RESONANCES

In this section, it is assumed that there are two dominant modes. Two cases are
signi"cant. The velocity variation frequency may either be nearly equal to the sum
of any two modes or to the di!erence of any two modes.

4.1. COMBINATION RESONANCES OF SUM TYPE

Upon taking two dominant modes (i.e. the nth and mth modes)

X"u
m
#u

n
#ep, (42)

the solution can be written at O(1) as

w
0
(x,¹

0
,¹

1
)"A

n
(¹

1
)eiu

n
¹

0>
n
(x)#A

m
(¹

1
) eiu

m
¹

0>
m
(x)#cc, (43)
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where>
n
is de"ned in equation (19). Substituting equation (43) into equation (8) and

using relation (42), one obtains

D2
0
w

1
#2v

0
D

0
w@
1
#(v2

0
!1)wA

1
#l2

f
wil

1

"M!2D
1
A

n
(iu

n
>
n
#v

0
> @
n
)

#((u
m
!1

2
X)>M @

m
#(iv

0
>M A
m
)AM

m
v
1
eip¹

1Neiu
n
¹

0

#M!2D
1
A

m
(iu

m
>
m
#v

0
>@
m
)

#((u
n
!1

2
X)>M @

n
#iv

0
>M A
n

)AM
n
v
1
eip¹

1Neiu
m
¹

0#cc#NS¹. (44)

Taking the solution for O(e) as

w
1
(x,¹

0
,¹

1
)"/

n
(x,¹

1
)eiu

n
¹

0#/
m
(x,¹

1
)eiu

m
¹

0#= (x,¹
0
,¹

1
)#cc, (45)

where the "rst two terms are related to secular terms and the third term is for
non-secular terms. Substituting equation (45) into equation (44) and separating the
solutions for nth and mth modes, one obtains

l2
f
/il

n
#(v2

0
!1)/A

n
#2iv

0
u

n
/@

n
!u2

n
/
n

"!2D
1
A

n
(iu

n
>
n
#v

0
>@

n
)#M(u

m
!1

2
X )>M @

m
#iv

0
>M A
m
NAM

m
v
1
eip¹

1 , (46)

l2
f
/il

m
#(v2

0
!1)/A

m
#2iv

0
u

m
/@
m
!u2

m
/

m

"!2D
1
A

m
(iu

m
>
m
#v

0
>@

m
)#M(u

n
!1

2
X )>M @

n
#iv

0
>M A
n
NAM

n
v
1
eip¹

1 . (47)

These two equations can be solved in a way similar to that for the principal
parametric resonance case and the complex amplitude modulation equations are
obtained as

D
1
A

n
#k

3
AM

m
eip¹

1"0, D
1
A

m
#k

4
AM

n
eip¹

1"0, (48, 49)

where

k
3
"!

G(um
!1

2
X)P

1

0

>M @
m
>M
n
dx#iv

0P
1

0

>M A
m
>M
n
dxH v

1

2AiunP
1

0

>
n
>M
n
dx#v

0 P
1

0

>@
n
>M
n
dxB

, (50)

k
4
"!

G(un
!1

2
X)P

1

0

>M @
n
>M
m
dx#iv

0P
1

0

>M A
n
>M
m

dxH v
1

2AiumP
1

0

>
m
>M
m

dx#v
0 P

1

0

>@
m
>M
m

dxB
. (51)
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For equations (48) and (49), one introduces the transformations

A
n
"B

n
eip¹

1
/2, A

m
"B

m
eip¹

1
/2 (52)

and obtains

D
1
B

n
#i

p
2
B
n
#k

3
B1

m
"0, D

1
B

m
#i

p
2
B
m
#k

4
BM
n
"0. (53, 54)

The stability may be directly determined from the above equations. One assumes
that equations (53) and (54) possess solutions of the form

B
n
"b

n
ej¹

1, B
m
"b

m
ej1 ¹

1 , (55)

where b
n

and b
m

are real. Substituting (55) into the equations (53) and (54),
taking the complex conjugate of the second equation, one obtains for non-trivial
solutions

j"GJ!(p2/4)#k
3
k1
4
. (56)

Using de"nitions (50) and (51), one may show that k
3
k1
4

is always real. If k
3
k1
4
(0,

then the system is stable everywhere and if k
3
k1
4
*0 then the stability boundaries

are determined by the lines

p"G2Jk
3
k1
4
, (57)

or

X"u
m
#u

n
G2eJk

3
k1
4
. (58)

Numerical treatment of the above equation is given in the next section.

4.2. COMBINATION RESONANCES OF DIFFERENCE TYPE

Upon assuming m'n without loss of generality, the nearness of frequency to the
di!erence of mth and nth modes is expressed as

X"u
m
!u

n
#ep. (59)

A calculation similar to that for the sum-type resonances yields the complex
amplitude equations
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e~ip¹
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n
eip¹

1"0, (60, 61)
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where
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A suitable transformation for this case is

A
n
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1
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m
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m
eip¹

1
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Substituting into the equations yields
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"0. (65, 66)

One assumes solutions of the form

B
n
"b

n
ej¹

1, B
m
"b

m
ej¹

1 , (67)

For non-trivial solutions,

j"GJ!(p2/4)#k
5
k
6
. (68)

From the de"nitions given in equations (62) and (63) it can be shown that k
5
k
6

is
always a negative real number,

k
5
k
6
(0. (69)

In equation (68), the region inside of the root is always negative. j is then a pure
imaginary number denoting that the solutions are always bounded. In conclusion,
for di!erence-type combination resonances, no instabilities arise up to O(e).

5. NUMERICAL EXAMPLES

In this section, numerical plots for the natural frequencies and stability borders
will be presented.

Natural frequencies are found by solving equations (13) and (15) simultaneously
and plotted in Figures 2 and 3 for the "rst and second modes respectively for six
di!erent #exural sti!ness values. As seen, with increasing mean velocity, natural
frequencies decrease. Increasing #exural sti!ness (introducing beam e!ects) on the
other hand causes an increase in natural frequencies.



Figure 2. Comparisons of "rst natural frequency values for di!erent #exural sti!nesses.

Figure 3. Comparisons of second natural frequency values for di!erent #exural sti!nesses.
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Figure 4. Stable and unstable regions for principle parametric resonances for the "rst mode (n"1,
l
f
"0)2).

Figure 5. Stable and unstable regions for principle parametric resonances for the "rst mode (n"1,
l
f
"0)6).
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Figure 6. Stable and unstable regions for principle parametric resonances for the "rst mode (n"1,
l
f
"1)0).

Figure 7. Stable and unstable regions for principle parametric resonances for the second mode
(n"2, l

f
"0)2).
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Figure 8. Stable and unstable regions for principle parametric resonances for the second mode
(n"2, l

f
"0)6).

Figure 9. Stable and unstable regions for principle parametric resonances for the second mode
(n"2, l

f
"1)0).
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Figure 10. Stable and unstable regions for combination resonances of sum type for the "rst two
modes (n"1, m"2, l

f
"0)2).

Figure 11. Stable and unstable regions for combination resonances of sum type for the "rst two
modes (n"1, m"2, l

f
"0)6).
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Figure 12. Stable and unstable regions for combination resonances of sum type for the "rst two
modes (n"1, m"2, l

f
"1)0).
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In Figures 4}6, stable and unstable regions are plotted for principle parametric
resonances case for the "rst mode for three di!erent #exural sti!ness values
(l

f
"0)2, 0)6 and 1). In all "gures (Figures 4}12), the regions in between the planar

surfaces are unstable whereas the remaining regions are stable. With increasing
#exural sti!ness value, the stability regions shift to higher X values. Increasing the
velocity variation amplitude enlarges the stability regions. In Figures 7}9, stable
and unstable regions are given for the second mode. Similar conclusions can be
drawn, as written for Figures 4}6.

In Figures 10}12, stable and unstable regions are plotted for combination
resonances of sum-type case for the "rst two modes for three #exural sti!ness
values. As the #exural sti!ness value increases, the stability regions shift to higher
X values. Increasing the velocity variation amplitude causes the stability regions to
be wider.

6. CONCLUDING REMARKS

In this study, the vibrations of an axially moving Euler}Bernoulli beam has been
investigated. The velocity is assumed to be harmonically changing about a mean
value. The method of multiple scales is applied to the equation of motion.
Velocity-dependent natural frequencies are found by using a standard root-"nding
algorithm for di!erent #exural sti!nesses for the "rst two modes.
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The in#uence of small #uctuations of velocity on the stability of the system is
investigated. The boundaries separating stable and unstable regions are calculated.
Principal parametric resonances and combination resonances of sum and di!erence
type for any two modes are considered in the analysis. It is found that for velocity
#uctuation frequencies near twice any natural frequency, an instability region
occurs whereas for the frequencies close to zero, no instabilities are detected up to
the "rst order of approximation. For sum-type combination resonances,
instabilities do occur. On the contrary, no instabilities are detected for
di!erence-type resonances up to the "rst order of approximation. Boundaries
separating stable and unstable regions are plotted for principle parametric and
combination resonances of sum type. It is shown that beam e!ects cause the
stability boundaries to shift to higher frequency values and increasing the velocity
variation amplitude causes the stability regions to be wider.
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