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The dynamic response of an axially accelerating, elastic, tensioned beam is
investigated. The time-dependent velocity is assumed to vary harmonically about
a constant mean velocity. These systems experience a coriolis acceleration
component which renders such systems gyroscopic. The equation of motion is
solved by using perturbation analysis. Principal parametric resonances and
combination resonances are investigated in detail. Stability boundaries are
determined analytically. It is found that instabilities occur when the frequency of
velocity fluctuations is close to two times the natural frequency of the constant
velocity system or when the frequency is close to the sum of any two natural
frequencies. When the velocity variation frequency is close to zero or to the
difference of two natural frequencies, however, no instabilities are detected up to
the first order of perturbation. Numerical results are presented for different flexural
stiffness values and for the first two modes.

© 1999 Academic Press

1. INTRODUCTION

Due to their technological importance, the vibrations of axially moving materials
have been investigated by many researchers. Threadlines, high-speed magnetic and
paper tapes, strings, power transmission chains and belts, band-saws, fibres, beams,
aerial cable tramways and pipes conveying fluid are some of the examples. Ulsoy
et al. [1] and Wickert and Mote [2] reviewed the literature on axially moving
materials. Wickert and Mote [3] investigated the transverse vibrations of travelling
strings and beams. They used travelling string eigenfunctions and introduced
a convenient orthogonal basis suitable for discretization. The same authors [4] also
presented a modal analysis using complex state eigenfunctions and their
conjugates. Ulsoy [5] treated a model for the transverse vibration of an axially
moving beam which includes elastic coupling between two adjacent spans. The
system was then analyzed by using a classical approximate solution method. It was
concluded that the presence of a beating phenomenon at low transport velocities
was destroyed by higher velocities and/or tension differences in the two spans.
Al-Jawi et al. [6-8] first investigated the vibration localization phenomenon in
dual-span axially moving beams. Wu and Mote [9] studied simple torsion
parametric resonances and combination torsion-bending parametric resonances in
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an axially moving band by an in-plane periodic edge loading that was normal to the
longitudinal axis of the band. A theoretical basis for the analysis of band vibration
and stability was studied by Ulsoy and Mote [10]. The band natural frequencies
were found to decrease with increasing axial velocity at a rate dependent on the
wheel support system constant, and to increase with increasing axial tension or
“strain”.

Pakdemirli and Ulsoy [11] investigated principal parametric resonances and
combination resonances for any two modes for an axially accelerating string. They
found that for velocity fluctuation frequencies near twice any natural frequency, an
instability region occurs whereas for the frequencies close to zero, no instabilities
were detected. For combination resonances, instabilities occurred only for those of
additive type. No instabilities were detected for difference-type combination
resonances in agreement with reference [12]. Oz et al. [13] investigated the
transition behaviour from strip to beam for axially moving continua. An
approximate analytical expression for the natural frequency was given for the
problem. For variable velocity profiles, stability borders were determined
analytically. The beam effects were studied. Wickert [14] analyzed free non-linear
vibrations of a moving beam over the sub- and superharmonic transport speed
ranges. Pellicano and Zirilli [15] presented a boundary layer solution for the
axially moving beam problem with small flexural stiffnesses. Asokanthan and
Ariaratnam [16] investigated flexural instabilities in moving bands under
harmonic tension. They discussed the effects due to damping, mean band speed,
and the band compliance on the band stability.

In most of the references given, the transport velocity was taken as constant. In
reality, the systems are exposed to accelerating and decelerating motions. Miranker
[17] took a model for the transverse vibrations of a tape moving between a pair of
pulleys and by using a variational procedure derived the equations of motion for
time-dependent axial velocity. Mote [18] investigated the problem of an axially
accelerating string with harmonic excitation at one end and determined stability by
Laplace transform techniques. Pakdemirli et al. [19] re-derived the equations of
motion for an axially accelerating string using Hamilton’s principle and
numerically investigated the stability of the response using Floquet theory.
A sinusoidal variation of the transport velocity, about a mean velocity of zero,
was considered in the analysis. Pakdemirli and Batan [20] considered a different
type of velocity variation, namely the periodic, constant acceleration-deceleration
type.

In this study, an Euler-Bernoulli beam having different flexural stiffness values
and moving with harmonically varying velocities is considered. The beam is simply
supported at both ends. The equation of motion is derived by following a method
similar to that given in reference [ 14]. A harmonically varying velocity function is
chosen. The equation of motion is solved by directly applying the method of
multiple scales to the partial differential system (direct-perturbation method). For
higher order expansions, solutions obtained by using this direct-perturbation
method better represent the real behaviour of the system than the common method
of discretization (discretization—-perturbation method) [21-28]. In the present case,
which contains only two terms in the expansion, the advantage of using the
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direct-perturbation method is that the equations need not be cast into a form
convenient for orthogonalizing the modes [11]. The natural frequency variation
with velocity for various flexural stiffness values are determined for the first two
modes. Principal parametric resonances, sum and difference-type combination
resonances are investigated. For velocity fluctuation frequencies near twice any
natural frequency, an instability region occurs whereas for frequencies close to zero,
no instabilities are detected. For combination resonances, instabilities occurred
only for those of additive type. No instabilities are detected for difference-type
combination resonances up to the first approximation order.

2. APPROXIMATE ANALYSIS

For the axially moving beam illustrated in Figure 1, by following a derivation
similar to that given in reference [14], it can be shown that the linear,
time-dependent, dimensionless equation of motion is

W4 200+ W+ v+ (02— w' =0, (1)

where w is the transverse displacement, v is the axial velocity and v, is the
dimensionless flexural stiffness. The material particle of the travelling beam
experiences local w, Coriolis 2w'v, and centripetal v*w” acceleration components.
The boundary conditions are

w0,0) =w(l,t) =0,  w'(0,£) = w'(1,6) = 0. )

When v} = 0, equation (1) reduces to that of a travelling string. The dot denotes
differentiation with respect to time and the prime denotes differentiation with
respect to the spatial variable x.

Assuming that the velocity is harmonically varying about a constant mean
velocity vy, one writes

v = vg + &v; Sin Qt, 3)

where ¢ is a small parameter and ¢v;, which is also small, represents the amplitude
of fluctuations, Q is the fluctuation frequency. Unlike in reference [13], v} is now an
order one term. Substituting equation (3) into equation (1) and keeping terms up to
the first order of approximation, one has

W+ 2000 + (05 — DW” + viw®” + g(v,Q cos Qtw’ + 2v, sin Qtw' + 2vov; sin Qt w”) = 0.

()

w(x,t) v(t)

S ~—,

Figure 1. Axially moving beam with time-dependent velocity.




242 H. R. OZ AND M. PAKDEMIRLI

The direct perturbation method will be applied to equation (4) in search of
solutions. This method does not require conversion of the equation into other
forms as done in the discretization—perturbation method [11]. Using the method of
multiple scales [29, 30] and assuming a first order expansion, one writes

w(x, t;€) = wo(x, To, T1) + ew1(x, To, T1) + --- , (5)

where wo and wi are the displacement functions at orders 1 and ¢, To =t and
T1 = &t are the usual fast and slow time scales. In terms of the new variables, the
time derivatives can be written as

d/dt =Do +eDy + -+,  d2/de* = D3 + 2eDoD1 + - , (6)

where D, = 0/0T,. Substituting equations (5) and (6) into equation (4), separating
terms at each order of ¢, one obtains

O(1): Ddwo + 2voDowo + (v3 — 1)wé + viwh =0, (7)
O(e): Dgw1 + 2voDow't + (vd — 1)wi + viw? = —2DoD1wo — 2v0D1wo
— 2v1sin QToDo wo — 20001 sin QTo wo — Quv1 cos 2To wo (8)
The solution at order 1 can be written as follows:
wo(x, To, T1;8) = An(T1) e Yu(x) + Au(T1)e ™ 0 Ya(x), ©)
The spatial functions Yi(x) satisfy the equation
ViYW + (vd — 1)Y5 + 2ivowaYs — wi Yo =0, (10)
with the boundary conditions
Y(00=0 Yi1)=0; Y. (0)=0, Ys(1)=0. (11)
The solution is
Yu(x) = c1a(€® + Cone®> + Cane™ + Cane™+). (12)
The fin satisfy the dispersive relation
V#ph + (1 — v3) P — 20nv0fin — w2 =0, i=1,23,4--, n=12---. (13)

Applying the boundary conditions to the solution, one obtains the matrix equation

1 1 1 1 1 0
%n ﬁ%n ﬁ%n 5421." CZn _ 0 (14)
eiBu i i giban C, Cin = ol
n
%nelﬂln ﬂ%nelﬁzn ﬂ%nelﬂsn ﬁinelﬁ“ C4n 0
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For non-trivial solutions, the determinant of the coefficient matrix must be zero,
which yields the support condition

[ef o+ 0 o @it P (B2, — B3 (B3 — )
[t e B (B3, — B3,) (B — )
[ U Y (B, — ) (B — B = 0. (19)
Numerical values of w, as well as f3;, can be calculated by using equations (13) and

(15). These results are presented in section 5. Using the set of equations in equation
(14), one can find the coefficients C,,, C3, and C,4, by elimination:

2 _ a2 ifan __ aiBu 2 A2 iBan __ aiBin
Cz,, - _ (ﬂ4n ln)(e € ) C3n — (ﬂ4n 1n)(e € ) (16, 17)

(B2 — B3 (@ — T’ (B — B @ — ™y

Can=—1—-0Cy,— C3, (18)
Hence, Y,(x) now reads

e”‘“‘x . (ﬂin - ﬁ%n) (eim" - eiﬁln) iBax (ﬂin - ﬁ%n) (eiﬁzn - eiﬂ“) i3,

(B — B @ =™ 7 (B — BT — o)

Yn(x) = Cin {

(B2 — BL) (€ — &) (B3, — %»(e"ﬂu—efﬁ“)) y }
—1 _ i , i «* 5 (19
+< T B = B — o) T (Fh = Fe—en ) ¢ 1)

At the second order of approximation, one substitutes equation (9) into equation
(8). The result is

D3wy + 200Dowy + (U3 — Wi + viw} =
— 2D, A,(i®,Y, + vo Y, )e' ™ + 2D, A4, (iw, Y, — v, Y, )e ™™
— w01 [A, Y, (€@ DTo _ giton=To) _ J (i@ o)To _ g =i+ on)To)]

+ iUOUII:An Yn/, (ei(wn + T, ei(w,. — Q)To) + gn Yn// (ei(g —o)To __ e_i(Q + w,,)TO)]

Q . . _ )
— 5 Uy [An Y,,' (et(wn + Q)T + el(wn - Q)To) + AnYn/ (el(Q —o,)T, + e*l(Q + w,.)To)]. (20)

Different cases arise depending on the numerical value of velocity variation
frequency. These cases will be treated in the following sections.
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3. PRINCIPLE PARAMETRIC RESONANCES

In this section, one assumes that one dominant mode of vibration exists.
Depending on the numerical value of frequency, three cases will be investigated
separately.

3.1. @ AWAY FROM 2w, AND 0

In this case, equation (20) becomes
Diwy + 2uoDow) + (V5 — DHw{ + viwy
= — 2D A,(iw,Y, + vy Y, )e " + cc + NST, (21)

where cc and NST denote complex conjugates and non-secular terms respectively.
One can take the solution of equation (21) as

Wl(xa TOa Tl) = d)n(xa Tl)eiw”TO + W(X, TO’ Tl) + cc, (22)

The first term is related to secular terms and the second term is related to
non-secular terms. If equation (22) is substituted into equation (21), the ¢, are found
to satisfy the equation

Vigy + (5 — Dy + 2i000,¢, — 0y = — 2D1A,(i0,Y, + voY,)  (23)
and the boundary conditions are
$.0)=0, ¢,0)=0, ¢,1)=0, ¢;(1)=0. 24

The solvability condition requires (see reference [29] for details of calculating
solvability conditions)

DA, =0. (25)
This means a constant amplitude solution up to the first order of approximation:
A, = Ao (26)

Hence, solutions are bounded for this case up to Of(e).

3.2. Q CLOSE TO 0

For this case, the nearness of 2 to zero is expressed as

Q = ¢o. 27
A similar calculation yields the solvability condition as

DA, + (kycosaTy + k,sineTy)A, =0, (28)
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where
1 _ 1 _ 1 _
QU1J Y, Y, dx vl<iw,,f Y, Y, dx + UOJ Y,{’Y,,dx)
0 0 0
ki = 1 1 > ko = 1 1 .
2<iconf Y, Y,dx + vof Y,,’Yndx> (ia),,j Y,Y,dx + UOJ‘ Y,,’Yndx>
0 0 0 0
(29)
After solving equation (28), one obtains
An — Aoe—(kl sinaT;/0) + k, cos O‘TI/O')' (30)

Since [sinoTy| < 1 and |cos 6 T;| < 1, the complex amplitudes are bounded in time.
Therefore, there are no instabilities up to this order of approximation.

3.3. @ CLOSE TO 2w,

In this case, to represent the nearness of velocity variation frequency to two times
one of the natural frequencies, one writes

Q =2w, + ¢o, (31)
where o is a detuning parameter. The solvability condition requires
DA, + koA, =0, (32)
where k 1s

1 1
{%(Q — 2(»,,)} Y)Y, dx — iUOJ Y'Y, dx}

0

ko = 1 1 U1,

Z{iwnf Y, Y, dx + v, j Y,Y, dx} (33)
0 0
To perform a stability analysis, one introduces the transformation
A, = B,e" " (34)
B, can be written in real and imaginary parts in the form
B, = (b + ib})e’ ™. (35)

Substituting equation (34) into equation (32) and equation (35) into the resulting
equation, and separating real and imaginary parts, one obtains the matrix equation

o R
(4 + kor) <k01 - 5) {ll)),;} _ {0}’ (36)

¢ n 0
<k01 + 5) (A — kor)
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where kog and ko; are the real and imaginary parts of k, defined in equation (33).
For a non-trivial solution (bX # 0, b! # 0), the determinant of the coefficient matrix
must be zero:

22 = — (02/4) + k2g + K2, (37)

Two roots are obtained from equation (37):

lia= F \/ —(0%/4) + kir + ki1 . (38)

For

— Vkir + ki < 0/2 <. /kir + kir (39)

the response is unstable whereas it is stable outside this region. Hence the stability
boundaries are determined by

012= F 2\/ k%R + kél- (40)

Inserting ¢ further into equation (31) gives the final result for the frequencies:

Q =20, F 26/k2x + K2, (41)

The two values of Q denote the stability boundaries for small . For a beam with
constant velocity, v; = 0 and hence ky, = 0 from equation (33) and no instabilities
arise for this case. When the amplitude of fluctuations v, increases, the stability
regions widen.

4. COMBINATION RESONANCES

In this section, it is assumed that there are two dominant modes. Two cases are
significant. The velocity variation frequency may either be nearly equal to the sum
of any two modes or to the difference of any two modes.

4.1. COMBINATION RESONANCES OF SUM TYPE

Upon taking two dominant modes (i.e. the nth and mth modes)
Q=w, + o, + &0, (42)
the solution can be written at O(1) as

Wo (X, TO) Tl) = An(Tl)eimnTO Yn(x) + Am(rrl)eime0 Ym(x) + cc, (43)
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where Y, is defined in equation (19). Substituting equation (43) into equation (8) and
using relation (42), one obtains

Diwy + 2voDowy + (05 — Wi + viw¥
={—-2D,A4,(iw,Y, + v, Y,)

+ (w0 — 3Q) Y,y + (o ¥,)) Ay €T F e o

+{ —2D,A,(iw, Y, + voYy)

+ (0, —3Q) Y, +ive ¥,) A,v1€7" e + cc + NST.  (44)
Taking the solution for O(e) as

wi(x, To, Ty) = ¢u(x, T)e™ ™ + ¢,u(x, Ty)e " + W(x, Ty, Ty) + cc,  (45)

where the first two terms are related to secular terms and the third term is for

non-secular terms. Substituting equation (45) into equation (44) and separating the
solutions for nth and mth modes, one obtains

Vigy + (5 — Dy + 2ivew,d, — Wi ¢y,

= — 2D, A, (i, Y, + voY}) + {(wn — 3Q) Y, + ivo ¥y } A vy €™, (406)
Vidm + (5 — 1 + 2iv60n Py — O P

= — 2D, Ap(iw, Yy + v Y3) + {(0, — 3Q) Y, +ivo Y, } A0 (47)

These two equations can be solved in a way similar to that for the principal
parametric resonance case and the complex amplitude modulation equations are
obtained as

DlAn + k3gmeiUT1 == 0, DlAm + k41‘T,,ei”T1 == O, (48, 49)

where

1

1
{(wm — %Q)J Y, Y, dx + ivof

0

1 1 s
2<iwnJ Y, Y, dx + v, J Y, Y, dx>

0

Y)Y, dx}vl

(50)

1
Y)Y, dx} vy
0
T 1 ~
2<ia)mJ Y, Y,dx + UOJ Y, Y, dx>

0

1
{(a),, — %Q)J Y, Y, dx + iUoJ

(51)
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For equations (48) and (49), one introduces the transformations
An — B,,CiaT‘/z, Am — Bm eiaT,/z (52)

and obtains

DB, + i%Bn +kyB,=0, DB, + i%Bm +kyB,=0. (53,54

The stability may be directly determined from the above equations. One assumes
that equations (53) and (54) possess solutions of the form

B,=b,e'",  B,=b,e", (55)

where b, and b, are real. Substituting (55) into the equations (53) and (54),
taking the complex conjugate of the second equation, one obtains for non-trivial
solutions

L= F . —(6%4) + kiky. (56)
Using definitions (50) and (51), one may show that k3k, is always real. If k3k, < 0,

then the system is stable everywhere and if k3;k, > 0 then the stability boundaries
are determined by the lines

g = $2«/k3E4, (57)
or
Q = Wy, + )y, $ 28« / k3E4. (58)

Numerical treatment of the above equation is given in the next section.

4.2. COMBINATION RESONANCES OF DIFFERENCE TYPE

Upon assuming m > n without loss of generality, the nearness of frequency to the
difference of mth and nth modes is expressed as

Q=w,— o, + 0. (59)

A calculation similar to that for the sum-type resonances yields the complex
amplitude equations

DA, + ksA, e T =0,  DyA,, + keA,e"" = 0, (60, 61)
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where
1 _ 1 _
{(wm — %Q)f Y, Y, dx — iv, f YnY, dx}vl

0 0

ks = — 1 1 s (62)
2<iwnj Y, Y,dx + UOJ Y, Y, dx)
0 0

1

1
{—(a)n—l—%Q)J Yn’Ymdx—FivOJ Y;,’Ymdx}vl
kg = — 20 A , (63)

2<ia)mj Y, Y, dx + UOJ Y, Y, dx>
0 0

A suitable transformation for this case is

A, = B,e T2 A,, = B,,e" T (64)

Substituting into the equations yields
.0 .0
Dan — IEBn + kSBm == 0, Dle + 15 Bm + k6Bn == O (65, 66)

One assumes solutions of the form
Bn = bne/lTl, Bm = meATl, (67)

For non-trivial solutions,

L= F . —(6%4) + ksks. (68)

From the definitions given in equations (62) and (63) it can be shown that kskg is
always a negative real number,

kske < O. (69)

In equation (68), the region inside of the root is always negative. A is then a pure
imaginary number denoting that the solutions are always bounded. In conclusion,
for difference-type combination resonances, no instabilities arise up to O(g).

5. NUMERICAL EXAMPLES

In this section, numerical plots for the natural frequencies and stability borders
will be presented.

Natural frequencies are found by solving equations (13) and (15) simultaneously
and plotted in Figures 2 and 3 for the first and second modes respectively for six
different flexural stiffness values. As seen, with increasing mean velocity, natural
frequencies decrease. Increasing flexural stiffness (introducing beam effects) on the
other hand causes an increase in natural frequencies.
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35

Uy

Figure 2. Comparisons of first natural frequency values for different flexural stiffnesses.

40 —

Y

Figure 3. Comparisons of second natural frequency values for different flexural stiffnesses.
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Figure 12. Stable and unstable regions for combination resonances of sum type for the first two
modes (n =1, m =2, v, = 1-0).

In Figures 4-6, stable and unstable regions are plotted for principle parametric
resonances case for the first mode for three different flexural stiffness values
(vy =02,0:6 and 1). In all figures (Figures 4-12), the regions in between the planar
surfaces are unstable whereas the remaining regions are stable. With increasing
flexural stiffness value, the stability regions shift to higher € values. Increasing the
velocity variation amplitude enlarges the stability regions. In Figures 7-9, stable
and unstable regions are given for the second mode. Similar conclusions can be
drawn, as written for Figures 4-6.

In Figures 10-12, stable and unstable regions are plotted for combination
resonances of sum-type case for the first two modes for three flexural stiffness
values. As the flexural stiffness value increases, the stability regions shift to higher

Q2 values. Increasing the velocity variation amplitude causes the stability regions to
be wider.

6. CONCLUDING REMARKS

In this study, the vibrations of an axially moving Euler-Bernoulli beam has been
investigated. The velocity is assumed to be harmonically changing about a mean
value. The method of multiple scales is applied to the equation of motion.
Velocity-dependent natural frequencies are found by using a standard root-finding
algorithm for different flexural stiffnesses for the first two modes.
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The influence of small fluctuations of velocity on the stability of the system is
investigated. The boundaries separating stable and unstable regions are calculated.
Principal parametric resonances and combination resonances of sum and difference
type for any two modes are considered in the analysis. It is found that for velocity
fluctuation frequencies near twice any natural frequency, an instability region
occurs whereas for the frequencies close to zero, no instabilities are detected up to
the first order of approximation. For sum-type combination resonances,
instabilities do occur. On the contrary, no instabilities are detected for
difference-type resonances up to the first order of approximation. Boundaries
separating stable and unstable regions are plotted for principle parametric and
combination resonances of sum type. It is shown that beam effects cause the
stability boundaries to shift to higher frequency values and increasing the velocity
variation amplitude causes the stability regions to be wider.
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